SF-50E

AWS A5.36. E91T1-C1A8-Ni2-H4

EN ISO 17632-A: T 50 6 ZMn2.5Ni P C1 2 H5

EN ISO 9606-1: FM1

Flux cored wire for welding high tensile steels min. YP 500 Mpa.

General description:

SF-50E is a seamless rutile flux cored wire developed for welding high tensile steel such as i.e. Weldox 500. The wire is developed for 100% Co2 (C1) as shielding gas.

SF-50E is CTOD tested.

Due to its seamless characteristic, the wire has an extremely low hydrogen content (typical 3ml/100g weld metal), something which ensures low risk of cold cracks.

The wire is copper coated and has a clean surface which together with exact diameter and perfect roundness ensures a stable and even wire feeding. The wire stick out should be between 15-25mm

Welding positions:

Welding current:

DC+

Type of gas / flow:

100% CO₂

20-25 l/min.

Chemical composition of all-weld-metal:

С	Si	Mn	Р	S	Cu	Ni		
Max.0,12	Max.0,80	Max.1,50	Max.0,030	Max.0,030	Max.0,40	1,75-2,75		

Diffusible hydrogen content (ml/100g):

≤4 ml/100g

Mechanical properties of all-weld-metal:

Yi	eld and Tensile Strength	Charpy Impact Test		
Yield Mpa	Tensile Mpa	Elongation %	Charpy V (J) -60 °C	
Min.537	621-720	Min.18	Min.47	

Guidance - Ampere (DC+):

Wire diameter	1,2 mm	
Ampere / Volt		

Packaging information:

1,2mm x 12,5kg spool D300

Approvals:

DNV-GL, ABS, BV, CE

Reference / date:

SF-50E, English, 07.06.2019.

Perfect Welding

www.nst.no